1

Bowron Abernethy Chess Engine

Christopher W. Bowron Robert D. Abernethy IV
December 7, 2000

Abstract

In this paper we will discuss the game of chess and how the AI com-
munity has attempted to solve the problem of creating an agent that is
capable of beating human grand masters. We will also discuss our chess
agent, BACE, and describe the specific algorithms that we implemented.
We will focus our attention on two main aspects of BACE - searching and
learning. The searching algorithm consists of a modified version of the
alpha-beta search called NegaScout. Our learning algorithm is a varia-
tion on the TD(A) technique. A discussion of our experiments and results
will follow our description of BACE. Finally, we will state our conclusions
and contemplate future work.

Chess

The game of chess is a good domain for practicing artificial intelligence methods.
This is mainly due to the environment. Chess consists of a set of states, from
each state a set of legal actions are possible. The game can end in one of three
outcomes - win, lose, or draw. The chess environment can be characterized as
follows:

Accessible - all aspects of the game are perceivable by the agent

Deterministic - the actions available are completely dependent on the cur-
rent state

Non-episodic - actions taken in the game will affect later actions

Semi-static - the environment does not change while an agent is thinking,
however, the amount of time the agent has does.

Discrete - there are a finite number of possible actions at any given state

A simple strategy for building a chess agent would be to begin at the initial
state, examine all the possible moves, and search each move and every possi-
ble counter-move until a path is found to a win state. This is indeed a simple
strategy; however, such a brute force method is not feasible due to the large
branching factor at each state. Thus, Al strategies must be used. These strate-
gies view the game of chess as one large tree and they attempt to search through
the tree as efficiently as possible.

2 History

The history of chess in the AI community dates back about fifty years when
Claude Shannon distinguished between two different types of chess agents. The
first type of agent, Type-A, referred to agents that implemented a brute force
method. Type-B, on the other hand, described those agents that took into
account some chess logic and only examined a subset of moves at any given
state. Since the 1950’s, great strides have been occured in the Al community.
In May 1997, a brute force agent named Deep Blue defeated the human world
champion, Gary Kasporov.

Although there are many chess agents around, we wish to discuss one in
particular due to the influence it had in the development of BACE’s learning
algorithm. In Baxter, Tridgell, and Weaver’s paper “Learning to Play Chess
using Temporal Differences”, they discuss a chess agent called KnightCap. What
makes KnightCap interesting and different than most chess agents is its ability
to learn its evaluation function. It does this by using a modified version of
Sutton’s TD(A) algorithm.

The TD()) algorithm had been used previously (and with great success)
by Tesauro’s backgammon agent, TD-Gammon. However, simply implementing
the algorithm in a chess agent isn’t practical because chess requires a deeper
search through the tree. In TD-Gammon the search is very shallow - one to
three ply. To be competitive in chess it is necessary to search as deep as at least
five or six ply. Therefore, Baxter, Tridgell, and Weaver needed to make some
modifications to the general algorithm. The major modification was to have the
TD algorithm execute on the leaf states of its searches, rather than the actual
positions that occurred during the game.

3 BACE

3.1 Overview

BACE is a fairly simple implementation of chess. It is designed to work in one
of three modes: independently, with the X interface XBoard, or run remotely
on a server using RoboFics. The core chess engine was written by Christopher
Bowron. The learning algorithms were implemented by Christopher Bowron
and Robert Abernethy. Table 2 in the appendix contains locations of the files.

While being a relatively simple implementation, it has a number of powerful
features, including transposition tables, NegaScout search, move ordering, and
a temporal difference learning algorithm.

3.1.1 Board Representation

The basic board representation in BACE is an array of 64 integers. Each array
item is a mapping between a chess piece and an integer between 0 and 13. The
high order bits of the integer represent the piece. 0 represents an open square,
1 represents pawn, and so on, with 6 representing a king. The lowest order

bit represents the piece colors. 0 represents white, 1 represents black. This
representation was chosen to allow for quick testing of a squares occupancy as
well as determine if the piece are friend or foe.

Along with the basic square information, some additional information is
updated dynamically. One such feature is the flags integer which consists of
12 bits enumerating castling rights, en passantes, double pawn pushes, castling
information, and promotional information.

An array representing the number of pawns on each file is also kept dy-
namically, as well as the material each side has, a positional evaluation of each
sides pieces, an integer representing the current board hash value, the number
of pieces on the board, an array containing the number of each individual piece
on the board, and also the squares on which the kings reside. This information
is kept to facilitate evaluations, move generations and move legality checking.

3.2 Search Algorithms

Implemented in BACE are many different variants of the negamax search algo-
rithm. By default, BACE uses the NegaScout algorithm invented by Prof. Dr.
Alexander Reinefeld which is a modified alpha-beta pruning technique which
greatly reduces the number of nodes searched. The main idea is to search with
a null window in most of the nodes and only with a wider window where it is nec-
essary. If the search requires the full window the position must be re-searched.
Thus, move ordering and storing encountered positions are very important when
using NegaScout.
The basic NegaScout algorithm is:

int NegaScout (position p; int alpha, beta);
{
int a, b, t, i;

determine successors p_1,...,p_w of p;

if (w==0)

return (Evaluate(p)); /* leaf node */
a = alpha;
b = beta;
for (1 =1; i <= w; i++)
{

t = -NegaScout (p_i, -b, -a);
if (t > a) && (t < beta) && (i > 1) && (d < maxdepth-1)
a = -NegaScout (p_i, -beta, -t); /% re-search */

a=max(a, t);
if (a == beta)
return (a); /* cut—off x/

b=a+ 1; /* set new null window */
}

return (a);

Also implemented is a generic alpha-beta pruning search, as well as a full
negamax search.

After doing a full search to the specified depth, BACE uses a quiescent search
to find positions that are relatively stable to facilitate better evaluations.

BACE uses an iterative deepening search algorithm on top of the other
search. The search depth begins at the previously stored depth based on the
transposition table entries. The search is made at the current depth, then
increased and searched again, and so on, until the search limit is reached. The
search can be limited by time, depth, or both.

An aspiration window can also be set up but was not used in the course
of these experiments. Using the aspiration search, The alpha and beta values
are initialized to the evaluation of the current position minus the value of two
pawns for alpha, and plus two pawns for beta. If our search results in a number
between those bounds, it is valid. If it lies outside that range, we must search
again with the full window. After each iteration, the alpha and beta values are
updated based on the evaluation at the previous depth.

3.3 Move Ordering

Move Ordering is very important when using alpha-beta pruning techniques.
Therefore, BACE uses a number of different criteria for sorting moves.

(To scale numeric values, assume that a pawn has a value of 1,000.)

The first criteria used in ordering moves is the difference in material value.
A bonus is given for captures of 1,000 plus 300 times the ratio of capturer to
capturee. Thus, the bonus for a pawn capturing a queen is very high, and a
queen capturing a pawn is much lower. Non-capture moves are initialized to
7Z€ro.

Bonuses are awarded to the base result in the following way:

e If the move has been stored as a refutation of the last move, a 2,000 point
bonus is awarded.

e If the position is stored in the transposition table, a 1,500 point bonus is
awarded to the stored move for that position.

e If the move has been stored as the primary ’killer move’ for the current
ply, a 1,000 point bonus is awarded.

e If the move has been stored as the secondary ’killer move’ for the current
ply, a 500 point bonus is awarded.

e Finally, an array called history is kept that is maintained as a count of
the number of times a move resulted in the changing of the alpha-beta

bounds. The value of that array for this move is added to the value of this
move.

Once each move has been evaluated according to these criteria, it is sorted
using a QuickSort algorithm.

3.4 Book

BACE uses the book from Marcel’s Simple Chess Program, written by Marcel
van Kervinck. The book consists of around 800 openings, of which BACE will
select the lines consistant with the current game and randomly select one line
for its next move. Once there are no longer available openings, BACE will begin
using its searching algorithms for move selection.

3.5 Transposition Tables

By default, BACE uses a transposition table of 220 entries. Each entry consists
of an integer hash value, an integer depth, a flag, a score and move. The flag
is used to signify whether the value stored is an upper bound, a lower bound,
or the exact result of evaluation this position searching to the specified depth.
The transposition table greatly reduces the number of positions that need to be
searched, because once an encountered position is reached, the score from the
table can be used rather than continuing the search. Positions are located in
the table by indexing into the transposition table array based on the lower order
bits of the current board hash value. If the value stored in the hash value in
the table is equal to the current board hash value, it is assumed that the stored
position is the same as the current position and the table can be used.

3.6 Evaluation Features

The evaluation function uses a number of different criteria. The score is first
computed for white. Points are added for each white feature on the board, and
subtracted for each black feature. If the evaluation is used to determine how
well black is doing, the result is negated.

Each piece has a weight associated with it. Originally, a pawn was 1000, a
knight 3250, a bishop 3500, a rook 5000, and queen 9000. The king was not
given a value because the loss of a king is the loss of a game.

Each piece has an associated array of 64 integers. Each entry in the array is a
bonus for that piece to be on that square. This array promotes the advancement
of pawns, and central control for knights, bishops, rooks, and queens.

Checkmate and stalemate are not recognized by the evaluation function,
rather they are evaluated inside the search function when a side to move is found
to have no valid course of action. However, if there is not enough material for
either side to mate, the draw is recognized by the evaluator. If one side does not
have potential mating material and the other does, the losing side is penalized
by a weight called "NOMATERIAL”.

Table 1 contains the a summary of the additional evaluation features.

Table 1: Evaluation Features

KCASTLEBONUS Bonus for having castled on the king’s side.

QCASTLEBONUS Bonus for having castled on the queen’s side.

NOCASTLEQUEEN Penalty for not having castled, and losing the right
to castle queen side.

NOCASTLEKING Penalty for not having castled, and losing the right

to castle king side.

QUEEN_TROPISM

Bonus for having queen close to opponent’s king.
This bonus is multiplied by the minimum of the dif-
ference of the queen’s rank and the opponents king’s
rank and the difference of their files.

ROOK_TROPISM

Bonus for having rook close to opponent’s king. This
bonus is multiplied by the minimum of the difference
of the queen’s rank and the opponents king’s rank
and the difference of their files.

DOUBLEDROOKS Bonus for having two rooks on the same rank or file.

OPENFILE Bonus for having a rook on a file that contains no
friendly pawns or opponent’s pawns.

SEMIOPEN Bonus for having a rook on a file that contains no
friendly pawns.

TWOBISHOPS Bonus for having two or more bishops.

KNIGHT_-TROPISM

Bonus for having knight close to opponent’s king.
The bonus is calculated as this number multiplied
by the addition of the rank difference and the file
difference.

ISOLATED Penalty for pawns that have no friendly pawns on
the adjacent squares.

DOUBLED Penalty for having multiple pawns on a file. Scored
once for each pawn on the file.

BACKEDUP Penalty for a pawn that is behind adjacent friendly
pawns.

NOMATERIAL Penalty for not having enough material to mate.
This is defined as

SEVENTH_ RANK_ROOK Bonus for having rook on its seventh rank. That is

white rooks on the seventh rank and black rooks on
the second rank.

3.7 Learning Algorithm

The learning algorithm is a modification of TD(A) known as TDLeaf. It was
introduced by Baxter, et. al. The main difference between TD()) and TDLeaf is
that the leaf nodes that were actually evaluated are those on which the temporal
differences algorithm is used.

To implement TDLeaf, we modified our quiescent search to save the board
of positions that evaluate between the alpha and beta bounds. After the search
is completed BACE checks to see if the result of the search is the same as that
stored. If not it checks to see if the value stored is the same as the previous value
stored. If it is, BACE will use the stored board from the previous evaluation. If
neither of these boards are correct, BACE checks the principle variation returned
to see if it leads the the correct board evaluation. If so, it is stored, if not the
position is ignored when calculating the temporal differences. These steps were
necessary because the use of the transposition tables means that sometimes
searches are not actually carried out fully to the leaf nodes. We used this
approach to decrease the amount of necessary overhead for board storage and
copying.

At the end of the game, each weight was updated according to the TD(\)
algorithm (see 1). For our experiments we used a A value of 0.70 and a learning
rate, o of 0.70.

n t
wi=w+ay (B —E)Y N FV,E (1)
t=0 k=0
To decrease the fluctuations encountered in evaluations, we used the tanh
function to smooth our values. The temporal differences used where based on
the values of tanh(BE;) where § was a value chosen so that an evaluation of up
one pawn was equal to .25.
The actual code used to implement the TD learning was as follows:

for (w = PAWN_VALUE + 1; w < LAST_WEIGHT; w ++)
{
for (p = 1; p <= (n-1);p++)
{
int j;
double S2 = 0.0;

for (j = 1; j<= p; j++)

{
double grad =
(1.0 - tanhvector[j] * tanhvector[j]) *
EVAL_SCALE * gradients([w] [j];
S2 += pow(TD_LAMBDA, p-j) * grad;
}

deltalw] += TD_ALPHA * d[p] * (S2 / EVAL_SCALE);

}

weights[w] += deltalw];
}

The 1—tanh?(BE;) was used instead of directly calculating sech?(3E;) because
it was faster to use the values we had already computed.

4 Experiments

During the development and debugging stage, BACE was tested using self-
play to ensure that the values arrived at through the temporal differences was
reasonable. Once we were fairly certain things were running smoothly, we reset
the weights to their original states. No experiments were done to compare how
a self-taught BACE compared with with an online taught BACE, although this
may be an interesting experiment to run.

We placed BACE on the Free Internet Chess Server (freechess.org) with its
initial weights. BACE was set to accept only rated 5 minute games. Initially,
its rating was around 1300. Before implementing the learning features its rating
was around 1400-1500.

5 Results

With our learning algorithm, BACE’s rating rose from around 1300 to a maxi-
mum of 1660, over a period of 24 hours, playing approximately 200 games. For
comparison, Master level rankings begin at 2,000. Figure 1 contains a graph of
BACE’s performance.

6 Conclusions

We feel that BACE performed reasonably well, despite the fact that it’s rating
dropped after implementing our learning algorithm. Having a static evalua-
tion function with predetermined weights, BACE was able to achieve a rating
of approximately 1500. After implementing our learning algorithm, its rating
dropped down to about 1300. We expected this initial drop due to the fact that
BACE would not be able to search as far as previously because of the increased
overhead that was necessary to store the extra board positions needed by our
learning algorithm. This overhead took up valuable time and limited the depth
of our searching algorithm. We predicted an increase in our rating as the num-
ber of games played increased and our agent was able to learn a more accurate
evaluation function. As expected BACE’s rating increased but was limited by
the small set of evaluation features.

7 Future Work

Although BACE enjoyed modest success, we believe that some minor changes
would be beneficial. One possible adjustment would be to add more evaluation
features. BACE uses very few features in its evaluation compared to many other
engines. Another possible improvement would be to move the currently hard-
coded positional arrays into the weights that are learned based on temporal
differences. This could have a significant effect on BACE’s positional play. The
way in which features are updated by temporal difference make it easy to add
more features.

Another possible approach likely to increase level of play would be to split the
evaluation weights into more than one set of values. We believe that separating
weights into two, or possibly three stages, beginning, middle and endgame may
be useful.

Once the weights begin to converge, it may be a useful feature to learn which
openings BACE is successful with and which it is not. This could be done by
recording information on which openings have led to wins, and selecting those
with a higher probability in the opening moves.

A Related Work

1. Tridgell, A., Baxter J., & Weaver L. Learning To Play Chess Using Tem-
poral Differences, Machine Learning, 40,243-263.

2. Sutton, Richard. Learning to Predict by the Methods of Temporal Differ-
ences. Machine Learning, 3,39-44. Richard Sutton.

3. Samuel, A. L. Some studies in machine learning using the game of checkers.
IBM Journal of Research and Development, 3, 210-229.

B File Locations

BACE http://www.cse.msu.edu/ bowronch/FILES /bce.tar.gz

XBoard http://research.compaq.com/SRC/personal/mann/cboard.html
RoboFics hitp://www.freechess.org/ hawk/robofics.html

mscp ftp:/ /ftp.freechess.org/pub/chess/Unix/mscp-1.0.tar.gz

Table 2: file locations

1700
1650
1600
1550
1500
1450
1400
1350
1300

Plot of ranking by hour of learning

I I
7rank.dat” ——

Hour

Figure 1: graph depicting rating fluctuation

10

25

